GoogleJAX是一个用于变换数值函数的机器学习框架,Google称其为为结合了修改版本的Autograd(通过函数微分自动获得梯度函数)和TensorFlow的XLA(加速线性代数)。该框架的设计尽可能遵循NumPy的结构和工作流程,并与TensorFlow和PyTorch等各种现有框架协同工作。

JAX的主要功能是包括:

  • grad:自动微分
  • jit:编译
  • vmap:自动矢量化
  • pmap:SPMD编程
©️版权声明:若无特殊声明,本站所有文章版权均归AI工具集原创和所有,未经许可,任何个人、媒体、网站、团体不得转载、抄袭或以其他方式复制发表本站内容,或在非我站所属的服务器上建立镜像。否则,我站将依法保留追究相关法律责任的权利。

类似网站